
Empowering Open Science with Scalable Interactive
Computing Environments in India

Kriyanshi Shah
Space Applications Centre, ISRO

I am Kriyanshi Shah. I work as a software engineer
at Space Applications Centre, ISRO.

I am a Software Engineer with experience in
building large-scale backend systems and
developer tools.
I specialized in designing platforms for satellite
data research and scientific data processing
pipelines.
My main focus at SAC is on applying Free and
Open Source Software (FOSS) to enable
reproducible, collaborative, and scalable
scientific research.
I am Experienced in Kubernetes, JupyterHub,
Docker, Golang, and distributed computing
systems for scientific workflows.

ABOUT
ME

HAVE YOU EVER WORKED WITH SATELLITE DATA BEFORE?
H5 FILES, SHORT FOR HIERARCHICAL DATA FORMAT VERSION 5, ARE A WIDELY USED
FILE FORMAT DESIGNED TO STORE AND ORGANIZE LARGE AMOUNTS OF COMPLEX
DATA, PARTICULARLY IN SCIENTIFIC, ENGINEERING, AND REMOTE SENSING
APPLICATIONS.

OFTEN WORKING AND MAKING SENSE OF SATELLITE DATA
IS EASIER RATHER THAN SPENDING SLEEPLESS NIGHTS
WONDERING WHY DIDN'T THAT LIBRARY INSTALL ITSELF
CORRECTLY.

The Challenge in Scientific Research

Our Observation

Our researchers and scientists work
on air gapped environments and
often installing and maintaining all
the python libraries are a headache.
Sometimes different environments
for different needs and that too on
machines without internet.
Managing all this with writing
meaningful code is a bit too much.

SO TO SUM IT UP

Diverse scientific domains
require customized
computational
environments.

Traditional setups are
often siloed, non-
reproducible, and lack
scalability. There's a pressing need for

open, collaborative, and
scalable solutions to
advance scientific
research.

PROBLEM VS. SOLUTION
Researchers face complex, fragmented
FOSS workflows.
Onboarding new users to scientific
computing tools is time-consuming.
Converting notebooks into shareable
applications requires extra coding
effort.
Limited infrastructure and support

 slows down adoption of Open
 Science practices.

Scalable cloud-native platform built with
Kubernetes + JupyterHub.
Preconfigured Docker environments for
different scientific domains (e.g., planetary
science, meteorology).
Notebook → Web App conversion via Mercury
integration inside JupyterLab.
REST APIs + JupyterLab extensions

 for intuitive app management (
create/update/delete).

Lower barrier to entry: researchers focus on
science, not infrastructure.

 I D E A B E H I N D I T

So we crafted something for our lovely team mates initially and then
we thought maybe this can be implemented everywhere. Cause they
say that,

 “build something you want.”

WE DID SOMETHING
We built interactive computing environments using
JupyterHub and Kubernetes, that offers scalable,
secure, and domain-customizable computing
environments tailored for scientific disciplines such
as planetary science and meteorology. Customized
Docker containers preloaded with scientific libraries
allow researchers to spin up user-ready
workspaces with minimal technical overhead.

OUR
SOLUTION

Built on Kubernetes + JupyterHub for scalable and secure user
environments. Customized Docker containers preloaded with
scientific libraries (planetary science, meteorology, etc.). Integrated
Jupyter Server Proxy + Mercury to convert notebooks into shareable
web applications. Added REST APIs & JupyterLab extensions for
managing Mercury apps (create/update/delete) via UI.

1. Cloud-Native
Architecture

2. Enhanced
User
Experience

3.
Domain-
Specific
Environments

4. Seamless
Research-to-
App Workflow

OVERVIEW

User Access
Researchers access
JupyterHub via a web
interface

Containerization
Each user session runs in a
kubernetes pod tailored to
specific scientific needs.

Scalability
Kubernetes manages
container deployment,
scaling, and resource
allocation.

Interactivity
Custom build of Mercury
integrates with JupyterLab,
allowing users to convert
notebooks into shareable
web apps

OPEN SOURCE TOOLS USED

1. Jupyterhub 2. KubeSpa
wner 3. Kubernetes 4. Jupyter

Server
Proxy

5 Docker 6 JupyterLab 7
Custom
mljar/mercury
build

8 Custom
JupyterLab
Extension

JupyterLab

Interactive computing
environment where researchers

write, analyze, and visualize
scientific workflows.

Jupyter Server Proxy

Enables secure access to
additional services within the

JupyterHub environment through
proxied URLs

Mercury (custom build)
Converts jupyter notebooks into

webapps. Our custom build supports
it inside from jupyterhub user pods.

JupyterLab
Extensions

Custom extensions developed to
let users create, update, and

delete Mercury web apps directly
from the JupyterLab interface.

WHY THEY ARE USED

JupyterHub
Provides a centralized web interface
for researchers to log in and access

computing environments.

KubeSpawner
Spawns user pods on Kubernetes

after authentication, ensuring
isolation and scalability

Kubernetes
Orchestrates container deployment,
scaling, and resource allocation for

multiple users.

Docker

Packages domain-specific scientific
environments (e.g., planetary
science, meteorology) with

preconfigured libraries.

ARCHITECTURE

8

Here’s the architecture

we crafted to create

the platform.

USER FLOW

The user pod is mounted

with a shared satellite

data volume, giving

access to large-scale

datasets for analysis.

Data Access

A researcher logs into

the platform via the

JupyterHub web

interface.

Authentication ensures

secure, role-based

access.

Login &
Authentication

KubeSpawner launches a

dedicated Kubernetes

pod for the user.

Each pod is based on a

custom Docker image

tailored for specific

scientific domains.

Pod Creation

Inside the pod, the

researcher works with

JupyterLab to write, run,

and visualize scientific

workflows.

Interactive
Environment

Using Mercury

integration, researchers

can convert notebooks

into interactive web

apps.

Web apps can then be

shared with peers for

collaboration and

reproducibility.

App Creation &
Sharing

TAILORED
ENVIRONMENTS

Planetary Science

Includes libraries including

cartopy, rasterio, xarray,

zarr, geopandas, netcdf4,

GDAL, astropy, skyfield,

sunpy, Pyproj, Shapely, D3.

Meteorology

Pre-installed with climate

modeling tools, data

visualization libraries like

matplotlib, cartopy, geoplotlib,

geoviews, hyplot, plotly, bokeh,

seaborn, Folium, Altair, pygal.

Wardiere.Inc page 005

MY
LEARNINGS

1. Installing all the python libraries on air
gapped machines

2. Creating custom jupyterlab extensions

3. Creating custom docker images

ENHANCING USER
EXPERIENCE

1. Mercury Integration

Users can convert notebooks into web apps
without leaving JupyterLab

2. RESTful APIs

Added for programmatic control over app
deployment.

3. JupyterLab Extensions

Custom extensions to manage Mercury apps
via GUI.

FUTURE DIRECTIONS
1. Broader Adoption

Plans to extend the platform to more
scientific domains.

2. Long-term Support

Strategies for maintaining and updating the
platform.

1.https://github.com/kriyanshii/mercury(custom build)
2.https://github.com/jupyterhub/jupyter-server-proxy
3.https://github.com/jupyterhub/kubespawner
4.https://github.com/mljar/mercury
5.microk8s
6.docker
7.https://github.com/jupyterhub/jupyterhub
8.https://github.com/jupyterlab/jupyterlab
9.https://github.com/jupyterlab/extension-template

Links to the tools that are used:

https://github.com/jupyterhub/kubespawner
https://github.com/jupyterhub/kubespawner
https://github.com/jupyterlab/extension-examples
https://github.com/jupyterhub/kubespawner

THANK YOU!
Kriyanshi Shah
http://github.com/kriyanshii
http://twitter.com/kriyanshii

